Recommender System Incorporating User Personality Profile through Analysis of Written Reviews

Peter Potash & Anna Rumshisky
Department of Computer Science, University of Massachusetts Lowell
Motivating Example

- Two users gave the film ‘Inception’ a 10/10 rating
- User A’s review:
 - “My sister has been bothering me to see this movie for more than two months, and I am really glad that she did, because this movie was excellent, E-X-C-E-L-L-E-N-T, EXCELLENT!”
- User B’s review:
 - “So far, Christopher Nolan has not disappointed me as a director, and ‘Inception' is another good one.”
Motivation

- Standard Matrix Factorization ignores external information about users and items
- By analyzing users’ written reviews, we have a better understanding of users
- This understanding leads to better recommendations
 - Even if users give the same numeric rating for an item, an analysis of the written review helps to understand how preferences diverge in the future
Leveraging Text

- Different ways of representing users based on text
 - Bag-of-Words
 - Dimensionality Reduction (PCA, LSA, LDA)
- Personality Profile
 - Personality profile provides interpretable representation of users
Presentation Outline

- Previous Approaches
- Kernelized Probabilistic Matrix Factorization (KPMF)
- Creating a Personality Model
- Experimental Design
- Results
- Discussion
Related Work: Matrix Factorization with NLP

- **Topic Modeling**

- **Distributed Representations**

- These works primarily seek to understand items/categories
Related Work: Rec Systems with Personality

- Personality from explicit test

- Personality from text
 - Roshchina et al. *A comparative evaluation of personality estimation algorithms for the twin recommender system*. 2011
KPMF

- Assumes generative process for rows of latent user/item matrices
- KPMF uses Gaussian Process parameterized by zero mean function and covariance matrices, K_u and K_v
- Rating for user i and item j drawn from Normal distribution, centered at u_i and v_j with standard deviation σ, a hyperparameter of the model
KPMF
MyPersonality Dataset (2013)

- Facebook activity of various users, including posts
- Users separately took personality test to determine **Big 5 personality score** (Openness, Conscientiousness, Extraversion, Agreeableness, Neuroticism)
- Sample dataset available for 250 users, roughly 10,000 status updates
- Shared task was held to develop systems that could predict personality based on Facebook activity
- Systems developed for shared task inspired features for our system
Personality Features

- Punctuation count
- Part-of-speech tag count
- Affin count
 - Lexicon assigns emotional valence score from -5 to 5 for a given token
- “To” count
- General Inquirer tags
 - Lexicon has 182 possible topic tags for input tokens
Personality Model

- Train 5 different personality models, one for each personality trait
- Use linear regression to predict continuous values in range [1,5]
- Result is 5-dimensional vector
Creating User Covariance Matrix

- Given personality vectors for two users, covariance is calculated as cosine similarity between personality vectors.
- Resulting cosine similarities are projected to interval [0,0.4].
Experimental Design

• Used crawler to create dataset of 2,087 Users and 3,500 movies from imdb
• Rating matrix is 1.55% dense
• Randomly create 3/5,1/5,1/5 training, validation, test split of data
• Trained model with gradient descent, use performance on validation set as stopping criteria
• Ran experiment 5 times, with 5 random splits of dataset
Comparative Models

- Matrix Factorization without optimization
- KPMF with diagonal user covariance matrix
- KPMF using textual feature representation
- KPMF using personality vector
- KPMF using personality vector concatenated with text features
- KPMF using dimensionality reduction of feature vector
Results

<table>
<thead>
<tr>
<th>Model</th>
<th>RMSE</th>
<th>% Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>KPMF Personality</td>
<td>0.2006</td>
<td>11.3</td>
</tr>
<tr>
<td>KPMF Text Features</td>
<td>0.1980</td>
<td>12.5</td>
</tr>
<tr>
<td>KPMF Personality + Text Features</td>
<td>0.1901</td>
<td>16.0</td>
</tr>
<tr>
<td>KPMF Dimensionality Reduction</td>
<td>0.2087</td>
<td>7.7</td>
</tr>
<tr>
<td>KPMF Diagonal User Covariance</td>
<td>0.2122</td>
<td>6.2</td>
</tr>
<tr>
<td>MF</td>
<td>0.2262</td>
<td>-</td>
</tr>
</tbody>
</table>
Discussion

- Best performance achieved when using both features and personality vector
- Raw features alone better than personality vector
- Personality vector is better dimensionality reduction

Future work:
- Improved personality prediction model
- Compute weighted similarity of personality vectors, learning weights during training
- Filtering item-specific content from reviews
Questions?